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Abstract. We derive an Ahlfors-Weill type extension for a class of holomorphic
mappings defined in the ball Bn, generalizing the formula for Nehari mappings
in the disk. The class of mappings holomorphic in the ball is defined in terms
of the Schwarzian operator. Convexity relative to the Bergman metric plays an
essential role, as well as the concept of a weakly linearly convex domain. The
extension outside the ball takes values in the projective dual to Cn, that is, in
the set of complex hyperplanes.

1. Introduction

The purpose of this paper is to obtain an explicit extension to Cn for a class
of biholomorphic mappings F defined in the unit ball Bn, which parallels the
Ahlfors-Weill construction derived for certain univalent mappings of the disk [2].
The analysis adapts to several variables the notion of conformal barycenter used
in [6], and leads to an extension EF of F that assumes values in the projective
dual to Cn. More precisely, for |z| > 1, EF (z) is a certain complex hyperplane
disjoint from the closure F (Bn), and the extension is a “homeomorphism” in the
sense that EF (z) depends in a continuous and injective way on z. Moreover, EF (z)

approaches a support hyperplane of F (Bn) as |z| → 1+, while EF (z) leaves any
compact subset as |z| → ∞. As a consequence of the analysis, F (Bn) is shown to
be weakly linearly convex, that is, a domain disjoint from a complex hyperplane
containing any given point on the boundary (see, e.g., [15], [3]). One can con-
sequently visualize the extension as gluing F (Bn) to a complementary domain in
the projective dual through the matching of a boundary point with a supporting
complex hyperplane.

The classes of mappings F considered in this paper are defined in terms of the
Schwarzian derivative, and in our setting we appeal to the work of T. Oda for a
generalization of the classical operator in one variable. The full extent of our results
require the assumption of quasiregularity in addition to a Schwarzian bound. The
hypothesis of quasiregularity appears also in other related extensions in several
variables, such as the use of Loewner chains for the generalization of the Becker
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univalence crietrion or for extending other classes of holomorphic mappings (see
[27] and, e.g., [11], [12]).

The higher dimensional Schwarzian splits into differential operators SF and S0F
of order two and three, respectively, a feature that is also present in other formu-
lations of this operator in several variables (see, e.g., [18], [19], [21]). The second
author has developed important properties of Oda’s Schwarzian, in particular, in
connection with invariance and injectivity criteria [13], [14]. Our work relies in
a significant way on the behavior of a real valued function (density function) as-
sociated in a canonical way with a locally biholomorphic mapping. The density
function becomes convex relative to the Bergman metric once adequate bounds on
the Schwarzian are in force. For holomorphic mappings of one complex variable,
the real valued function is simply the square root of the Poincaré density of the
image domain. The treatment in several variables must deal with technical diffi-
culties absent in one variable, and which arise from first order derivatives in the
linear system associated with the Schwarzian. These terms can be controlled by
the (trace) order of the family Fα (see Definition 2.4 ahead), and indirectly, by the
norm of the Schwarzian.

Throughout the paper we consider Möbius shifts of a mapping F = (f1, . . . , fn)
of the form

T ◦ F = (l1(F )/l0(F ), . . . , ln(F )/l0(F )) , li(F ) = ai0 + ai1f1 + · · ·+ ainfn .

The appearance of the hypersurfaces of singularities l0(F ) = 0 within the ball
destroys the order of the family, and we are forced to modify the density function
and analyze its behavior regarding convexity away from the hypersurfaces.

As a byproduct of the analysis on convexity, we are able to establish an injec-
tivity criterion solely in terms of SF . This is more satisfactory than the condition
derived in [14] that requires an additional bound on S0F . Convexity also renders
distortion theorems for appropriately normalized mappings in the classes treated,
with estimates on the jacobian that are better than those obtained from the order
of the family [28].

In [7], we adapt the variational method introduced in [29] to estimate the order
of the family Fα in terms of α and the dimension n. As a consequence, we are able
to provide, in terms of n, a range for the Schwarzian norm that ensures convexity,
and later on, univalence and extensions.

In Section 2 of the paper we present the definition and basic properties of the
Schwarzian derivative in several variables, including the important Lemma 2.1
never stated in the work of Oda. In Section 3, we introduce both the density
and the modified density function, together with the results regarding convexity.
The analysis renders Theorem 3.9, which states that for α0 ≤ cn− 3

2 , c an absolute
constant, then functions in Fα0 are univalent in Bn.
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In Section 4 we collect several results on the jacobian, distortion and conti-
nuity up to the boundary that are obtained from convexity and quasiregularity.
Quasiregular mappings in the class Fα0 extend continuously to Bn and remain uni-
valent there. We also lay out the important process of normalization on which the
method of conformal barycenter is based. In particular, we show that for F ∈ Fα0

and every z0 ∈ Bn the image F (Bn) omits a certain hyperplane H(z0). This hy-
perplane represents the conformal barycenter of F relative to z0, and reduces to
a single point when n = 1. The explicit formula for H(z0) is consistent with the
expression for the Ahlfors-Weill extension when n = 1. When F ∈ Fα0 is quasireg-

ular, then F (Bn) ∩H(z0) = ∅, while H(z0) approaches a hyperplane of support of
F (Bn) as |z0| → 1. From this, the images are shown to be weakly linearly convex.
With the notation z∗ = z/|z|2 we obatin in Theorem 5.1 the extension

(1.1) EF (z) =

 F (z) , |z| ≤ 1

H(z∗) , |z| > 1

which glues F (Bn) with a complementary domain in the projective dual of Cn.

2. Preliminaries

Let F : Ω ⊂ Cn → Cn be a locally biholomorphic mapping defined on a domain
Ω. In [25] T.Oda defined a family of Schwarzian derivatives of F = (f1, . . . , fn) as

(2.1) Sk
ijF =

n∑
l=1

∂2fl
∂zi∂zj

∂zk
∂fl

− 1

n+ 1

(
δki

∂

∂zj
+ δkj

∂

∂zi

)
log JF ,

where i, j, k = 1, 2, . . . , n, JF = det(DF ) is the jacobian determinant of the difer-
ential DF and δki are the Kronecker symbols. For n > 1 the Schwarzian derivatives
have the following properties:

(2.2) Sk
ijF = 0 for all i, j, k = 1, 2, . . . , n iff F (z) = M(z) ,

for some Möbius transformation

M(z) =

(
l1(z)

l0(z)
, . . . ,

ln(z)

l0(z)

)
,

where li(z) = ai0 + ai1z1 + · · ·+ ainzn with det(aij) ̸= 0. For a composition

(2.3) Sk
ij(G ◦ F )(z) = Sk

ijF (z) +
n∑

l,m,r=1

Sr
lmG(w)

∂wl

∂zi

∂wm

∂zj

∂zk
∂wr

, w = F (z) .
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Thus, if G is a Möbius transformation then Sk
ij(G◦F ) = Sk

ijF. The S
0
ijF coefficients

are given by

S0
ijF (z) = (JF )1/(n+1)

(
∂2

∂zi∂zj
(JF )−1/(n+1) −

n∑
k=1

∂

∂zk
(JF )−1/(n+1)Sk

ijF (z)

)
.

One can recover a mapping from its Schwarzian components. Consider the
following overdetermined system of partial differential equations,

(2.4)
∂2u

∂zi∂zj
=

n∑
k=1

P k
ij(z)

∂u

∂zk
+ P 0

ij(z)u , i, j = 1, 2, . . . , n ,

where z = (z1, z2, ..., zn) ∈ Ω and P k
ij(z) are holomorphic functions in Ω, for k =

0, . . . , n and i, j = 1, . . . , n. The system (2.4) is called completely integrable if there
are n+1 (maximum) linearly independent solutions, and is said to be in canonical
form (see [31]) if the coefficients satisfy

n∑
j=1

P j
ij(z) = 0 , i = 1, 2, . . . , n .

Oda proved that (2.4) is a completely integrable system in canonical form if and
only if P k

ij = Sk
ijF for a locally boholomorphic mapping F = (f1, . . . , fn), where

fi = ui/u0 for 1 ≤ i ≤ n and u0, u1, . . . , un is a set of linearly independent solutions
of the system. A simple corollary of this is that F fails to be univalent in Ω iff there
exists a set u1, . . . , un of linearly independent solutions of (2.4) with P k

ij = Sk
ijF

which vanish at two distinct points in Ω [14]. For a given mapping F , u0 =

(JF )−
1

n+1 is always a solution of (2.4) with P k
ij = Sk

ijF . The following result not
stated in the work of Oda will be important in the rest of the paper.

Lemma 2.1. Let u be a solution of a completely integrable system of the form ( 2.4)
with P k

ij = Sk
ijF for some locally biholomorphic mapping F defined in Ω. Then there

exists a Möbius transformation T such that u = (JG)−
1

n+1 for G = T ◦ F .

Proof. We write F = (u1/u0, . . . , un/u0) for n + 1 linearly independent solutions

u0, u1, . . . , un of (2.4) with u0 = (JF )−
1

n+1 . Then u = b0u0 + b1u1 + · · · + bnun

for some unique constants bi. A simple calculation shows that (JT )−
1

n+1 = a0 +
a1w1 + · · · + anwn = l0(w) whenever T is a Möbius transformation of the form
(w1/l0(w), . . . , wn/l0(w)). Then

(J(T ◦ F ))−
1

n+1 = (JT (F ))−
1

n+1 (JF )−
1

n+1

= (a0 + a1f1 + · · ·+ anfn)u0

= a0u0 + a1u1 + · · ·+ anun ,
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hence it suffices to choose T with the property that (JT )−
1

n+1 = b0+b1z1+· · ·+bnzn.
Note that the zero set of u is given by the hypersurface a0 + a1f1 + · · ·+ anfn = 0,
that is, exactly the set where G becomes singular. �

Remark: We will say that the Möbius transformation T as in the Lemma 2.1 is
an inversion with respect to the hyperplane l0(w) = 0.

We recall the following definitions from [13], where the individual Schwarzians
Sk
ijF are grouped together as an operator.

Definition 2.2. For each k = 1, . . . , n we let SkF be the n× n matrix

SkF = (Sk
ijF ) , i, j = 1, . . . , n .

Definition 2.3. We define the Schwarzian derivative operator as the bilinear map-
ping SF (z) : TzΩ → TzΩ given by

SF (z)(v⃗) =
(
v⃗ tS1F (z)v⃗ , v⃗ tS2F (z)v⃗ , . . . , v⃗ tSnF (z)v⃗

)
,

where v⃗ ∈ TzΩ.

The operator SF (z) inherits a norm from the metric in TzΩ:

(2.5) ∥SF (z)∥ = sup
∥v⃗∥=1

∥SF (z)(v⃗ )∥ ,

and finally, we let

(2.6) ||SF || = sup
z∈Ω

||SF (z)|| .

Our interest is to study certain classes of locally biholomorphic mappings F
defined in the unit ball Bn. The Bergman metric gB on Bn is the hermitian product
defined by

(2.7) gij(z) =
n+ 1

(1− |z|2)2
[
(1− |z|2)δij + z̄izj

]
.

Is well known that the automorphism group of the ball are the transformations
given by

σ(z) =
Az +B

Cz +D
,

where A is n× n, B is n× 1, C is 1× n and D is 1× 1 with

AtA− CtC = Id ,
|D|2 −BtB = 1 ,
AtB − CtD = 0 ,

and that such automorphisms are isometries in the Bergman metric (see, e.g., [17]).
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As a consequence of this and of the chain rule (2.3), it was shown in [13] that

∥S(F ◦ σ)(z)∥ = ∥SF (σ(z))∥ ,

and hence

(2.8) ∥SF∥ = ∥S(F ◦ σ)∥ .

More generally, the Schwarzian norm is preserved under Möbius maps between
domains, that is, if σ is Möbius and Ω2 = σ(Ω1) then ∥SF∥2 = ∥S(F ◦ σ)∥1
whenever F is locally biholomorphic in Ω2.

Definition 2.4. We define the class Fα as

Fα = {F : Bn → Cn | F locally biholomorphic , F (0) = 0 , DF (0) = Id , ∥SF∥ ≤ α } .

In light of (2.8), Fα is a linearly invariant family, which is also compact [13].
The order of a linearly invariant family is defined by

(2.9) sup
F∈Fα

sup
|w|=1

1

2

∣∣∣∣∣
n∑

i,j=1

∂2fj
∂zi∂zj

(0)wi

∣∣∣∣∣ ,
which is finite for compact linearly invariant families (see, e.g., [28]).

3. Convexity and Univalence

Let F ∈ Fα, and consider a solution u of the integrable system

(3.1)
∂2u

∂zi∂zj
=

n∑
k=1

Sk
ijF

∂u

∂zk
+ S0

ijFu , i, j = 1, 2, . . . , n .

We define

λu(z) =
|u(z)|√
1− |z|2

.

The function λu is well-defined and real analytic away from the zero set of u.
According to Lemma 2.1, a nowhere vanishing solution of the system is of the

form u = (JF )−
1

n+1 for some F ∈ Fα; the corresponding function λu will be
denoted by λF .

Lemma 3.1. Let σ be an automorphism of Bn and F ∈ Fα. Then

λF◦σ = λF ◦ σ .

Proof. We have that

λF◦σ(z) = |J(F ◦ σ)(z)|−1/n+1 (1− |z|2)−1/2 ,
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but |Jσ(z)| =
(
1− |σ(z)|2

1− |z|2

)n+1
2

, therefore

λF◦σ(z) = |JF (σ(z))|−1/n+1

(
1− |σ(z)|2

1− |z|2

)−1/2

(1− |z|2)−1/2 = λF (σ(z)) .

�
Since Fα is a compact family, it has finite order, or equivalently,

Aα = sup
F∈Fα

|∇(JF )(0)| < ∞ .

For the equivalence of the above with the definition given in (2.9), see [13].

Lemma 3.2. Let F ∈ Fα and suppose u is a solution of the completely inte-
grable system (2.4) with P k

ij = Sk
ijF . If u ̸= 0 in Bn then the function φ(x) =

|u(x, 0, . . . , 0)| satisfies

φ′′(x) +
δ

(1− x2)2
φ(x) ≥ 0 ,

with

δ =
√
n+ 1(Aα + 1)α + C(n, α) ,

where Aα is the order of Fα and

C(n, α) =

(
4n2 + 2n− 2 +

n+ 1

n− 1

)
α2 +

(
4
√
n+ 1 + 8

√
n+ 1

n− 1

)
α .

Proof. By Lemma 2.1, there exists a function F ∈ Fα such that u = (JF )−1/n+1.
Since Fα ia a compact family it has finite order

Aα = sup
F∈Fα

|∇ log(JF )(0)| < ∞ .

(For the equivalence of the above with the definition given in (2.9), see [13].) Let
σ be an automorphism of Bn, G = [DF (ζ)]−1[Dσ(0)]−1(F ◦ σ(z) − F (ζ)) where
σ(0) = ζ. Thus G ∈ Fα and v = (JG)−1/n+1 = u · (Jσ)−1/n+1 = u · w, and

JF (ζ)Jσ(0)∇v(z) = ∇u(σ(z))Dσ(z)w(z) + u(σ(z))∇w(z) .

At z = 0, we have that

∇u(ζ)Dσ(0) =

(
∇v

v
(0)− ∇w

w
(0)

)
,

where the euclidean norm satisfies

(3.2)

(∣∣∣∣ ∂u∂z1 (ζ)(1− |ζ|2)
∣∣∣∣2 + n∑

k=2

∣∣∣∣ ∂u∂zk (ζ)√1− |ζ|2
∣∣∣∣2
)1/2

≤ (Aα + 1)|u(ζ)| .
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If X = (x, 0, . . . , 0) and a⃗ = ((1− x2)/
√
n+ 1, 0, . . . , 0) then

∥SF (X)(⃗a )∥2 = (n+1)

(
|S1

11F (X)|2(1− x2)4

(n+ 1)2(1− x2)2
+

n∑
k=2

|Sk
11F (X)|2((1− x2)4

(n+ 1)2(1− x2)

)
≤ α2 ,

and using equation (3.2) we obtain that

(3.3)

∣∣∣∣∣S1
11F (X)

∂u

∂z1
(X) +

n∑
k=2

Sk
11F (X)

∂u

∂zk
(X)

∣∣∣∣∣ ≤
√
n+ 1(Aα + 1)α

(1− x2)2
|u(X)| .

Because φ(x) = |u(X)| we have that φφ′ = Re{u′ū} and

φφ′′ ≥ Re{u′′ū} = Re

{
n∑

k=1

Sk
11F

∂u

∂zk
ū

}
+Re{S0

11F}φ2 .

However u satisfies the system (2.4) and using equation (3.3) one can conclude
that

φ′′ ≥ −
√
n+ 1(Aα + 1)α + C(n, α)

(1− x2)2
φ .

�
The following lemma establishes the main connection with convexity. By Hess(f)

we denote the hessian operator of a smooth function f relative to the Bergman
metric.

Lemma 3.3. Let F ∈ Fα. There exists α0 > 0 sufficiently small such that λF is
strictly convex in the Bergman metric of Bn if α ≤ α0. More specifically,

(3.4) Hess(λF ) ≥ β2 λF gB ,

for β = β(n, α0) > 0. In particular, λF can have at most one critical point in Bn.

Proof. The inequality (3.4) entails showing that for each geodesic γ, parameterized
by arc length in the Bergman metric, the function (λF ◦ γ)′′ ≥ β2 λF . In light of
(3.1) and the fact that Fα is linearly invariant, is suffices to show the required
inequality at the origin for the Bergman geodesic γ(t) = (x(t), 0, . . . , 0), that is,
with x(t) so that

x′(t)2 =
(1− x(t)2)2

n+ 1
.

Then
dλF

dt
=

dλF

dx

dx

dt
=

dλF

dx

1− x2

√
n+ 1

=
1√
n+ 1

(
d|u0|
dx

(1− x2)1/2 + |u0|(1− x2)−1/2x

)
.

Because u0 ̸= 0 in Bn, the previous lemma gives
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d2λF

dt2
=

1− x2

n+ 1

[(
d2|u0|
dx2

)
(1− x2)1/2 + |u0|(1− x2)−3/2

]
≥ (1− x2)−1/2

n+ 1
|u0|

[
1−

(√
n+ 1(Aα + 1)α + C(n, α)

)]
.

Because C(n, α) → 0 as α → 0, and since Aα is decreasing in α, we conclude that

(3.5)
√
n+ 1(Aα + 1)α + C(n, α) < 1

if α is sufficiently small. Then, with

β2(n, α) =
1

n+ 1

[
1−

(√
n+ 1(Aα + 1)α + C(n, α)

)]
,

we obtain that at the origin

d2λF

dt2
≥ β2(n, α)λF ,

as desired. �

For small values of α, the quantity β(n, α)
√
n+ 1 is always less than 1, but can

be made arbitrarily close to 1 by choosing α small enough. In particular, for given
n, there exists α0 sufficiently small so that for all α ∈ [0, α0]

(3.6)
1

n
< β(n, α)

√
n+ 1 < 1 .

To make this more precise, we observe that

C(n, α) ≤ 6n2α2 + 16
√
nα ,

so that, for example,

C(n, α) ≤ 1

2

provided that α ≤ 1

24n
. In [7] it is shown that

Aα ≤ (n+ 1)
[
1 +

√
n+ 1α + C(n, α)

]
,

so that in order to have, say,

√
n+ 1(Aα + 1)α + C(n, α) ≤ 3

4
,

it will be necessary to impose α ≤ cn− 3
2 , for some constant c independent of n.

Conditions (3.5) and (3.6) will be valid for α satisfying such a bound. In all future
reference, we will consider

(3.7) α0 ≤ cn− 3
2 .
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Let Br = B(0, r) = {z ∈ Bn : |z| < s = s(r)} be the ball centered at the origin
of radius r in the Bergman metric, and let u be a solution of (3.1) for which u ̸= 0
on Br. We consider the modified function λu,Br defined in Br by

λu,Br(z) =
|u(z)|√
s2 − |z|2

.

Together with this, it will be important to study the norm ||SF ||Br of the operator
SF relative to the subdomain Br.

Lemma 3.4. If z ∈ B(0, r) then

s2 − |z|2

1− |z|2
∥v∥r ≤ ∥v∥ ≤

√
s2 − |z|2
1− |z|2

∥v∥r ,

where ∥ · ∥r is the Bergman norm at point z ∈ Br.

Proof. We have that

∥v∥2r =
n+ 1

(s2 − |z|2)2
n∑

i,j=1

[(s2 − |z2|)δij + ziz̄j]viv̄j

=
n+ 1

(s2 − |z|2)2

(
n∑

i=1

(s2 − |z|2)|vi|2 + |zivi|2 +
n∑

i,j=1,i̸=j

ziz̄jviv̄j

)
=

n+ 1

(s2 − |z|2)2
(
(s2 − |z|2)|v|2 + |z1v1 + · · ·+ znvn|2

)
≥ n+ 1

s2 − |z|2
|v|2 ,

thus (n + 1)|v|2 ≤ (s2 − |z|2)∥v∥2r. Now, the norm of v in the Bergman metric at
z ∈ B(0, r) with |z| < r is

∥v∥2 =
n+ 1

(1− |z|2)2
n∑

i,j=1

[(1− |z2|)δij + ziz̄j]viv̄j

=
n+ 1

(1− |z|2)2

(
n∑

i=1

(1− |z|2)|vi|2 + |zivi|2 +
n∑

i,j=1,i̸=j

ziz̄jviv̄j

)
=

n+ 1

(1− |z|2)2
(
1− |z|2)|v|2 + |z1v1 + · · ·+ znvn|2

)
=

n+ 1

(1− |z|2)2

(
(1− |z|2)|v|2 + (s2 − |z|2)2

n+ 1
∥v∥2s − |v|2(s2 − |z|2)

)
=

n+ 1

(1− |z|2)2

(
(s2 − |z|2)2

n+ 1
∥v∥2r + (1− s2)|v|2

)
≤ s2 − |z|2

1− |z|2
∥v∥2r .
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On the other hand, since |z1v1 + · · · + znvn|2 =
(1− |z|2)2

n+ 1
∥v∥2 − (1 − |z|2)|v|2

we have that

∥v∥2r =
n+ 1

(s2 − |z|2)2
(
(s2 − |z|2)|v|2 + |z1v1 + · · ·+ znvn|2

)
=

n+ 1

(s2 − |z|2)2

(
(s2 − |z|2)|v|2 + (1− |z|2)2

n+ 1
∥v∥2 − |v|2(1− |z|2)

)
=

n+ 1

(s2 − |z|2)2

(
(1− |z|2)2

n+ 1
∥v∥2 + (s2 − 1)|v|2

)
≤ (1− |z|2)2

(s2 − |z|2)2
∥v∥2 .

�
Lemma 3.5. If ||SF || ≤ α then ||SF ||Br ≤ α .

Proof. Using the above lemma a straightforward calculation gives that,

∥SF (z)∥Br = sup
∥v∥r=1

∥SF (z)(v, v)∥r

= sup
∥v∥r=1

∥∥∥∥SF (z)

(
v

∥v∥
,

v

∥v∥

)∥∥∥∥
r

∥v∥2

≤ 1− |z|2

s2 − |z|2
∥SF (z)∥∥v∥2 ≤ α.

�
Lemma 3.6. Let F ∈ Fα0 and let u be a solution of ( 3.1) that does not vanish in
Br. Then λu,Br is convex in the Bergman metric of Br.

Proof. By Lemma 2.1 there exists a locally injective mapping G, possibly with
singularities, for which u = (JG)−1/n+1 and ||SG|| ≤ α0. By the assumption on u,
G is regular in Br and ||SG||Br ≤ α0 by the previous lemma. Hence the mapping
H(z) = G(rz) is locally biholomorphic in Bn and by invariance, ||SH|| ≤ α0.
It follows that λH is convex in Bn, which implies the lemma because λH(z) =

r
1

n+1λu,Br(rz). �

The following definition of the modified density function to sub-balls not centered
at the origin will become clear from the proof of Lemma 3.7. Let B = B(z0, r)
be the ball centered at z0 ∈ Bn of radius r in the Bergman metric, and let u be a
solution of (3.1) with u ̸= 0 in B. Let σ be an automorphism of Bn taking B to
Br and z0 to the origin. We define the modified density function associated with
u in the ball B by

λu,B =
|u(z)||Jσ|

1
n+1√

s2 − |σ(z)|2
,

where, as before, s = s(r) is the euclidean radius of Br.
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Lemma 3.7. Let F ∈ Fα0 and let u be a solution of ( 3.1) that does not vanish in
B = B(z0, r). Then λu,B is convex in the Bergman metric of B.

Proof. If we write u = (JG)−
1

n+1 for some mapping G holomorphic in B with
||SG|| ≤ α0, then H = G ◦ σ−1 becomes holomorphic in Br and

u = (JG)−
1

n+1 = (JH(σ))−
1

n+1 (Jσ)−
1

n+1 = v(σ)(Jσ)−
1

n+1 ,

where v = (JH)−
1

n+1 . We see that

λv,Br(σ(z)) =
|v(σ(z))|√
s2 − |σ(z)|2

=
|u(z)||Jσ|

1
n+1√

s2 − |σ(z)|2
= λu,B(z) .

Because ||SH|| = ||SG|| ≤ α0, it follows from Lemma 3.6 that λv,Br is convex
in the Bergman metric of Br, and therefore, that λu,B is convex in the Bergman
metric of B. �

We can now state two main results of this section.

Theorem 3.8. Let F ∈ Fα0 and let u be a solution of ( 3.1) with u(z0) = 1 and
∇u(z0) = 0 for some z0 ∈ Bn. Then u(z) ̸= 0 for all z ∈ Bn.

Proof. By the linear invariance of the family, we may assume that z0 = (0, . . . , 0).
There exists r > 0 such that u ̸= 0 in Br. Let r1 be the supremum of such r and
let B = Br1 . We claim that r1 = ∞. If not, there exists z1 ∈ Bn with |z1| = s(r1)
for which u(z1) = 0. By Lemma 3.6, the modified density function λu,B is convex
in B, and because ∇u(0) = 0, the origin is an absolute minimum for λu,B in B.
Hence

|u(z)| ≥ 1

r1

√
s2 − |z|2

for all z ∈ B. As z → z1 this last inequality leads to a contradiction because of
the order of vanishing of |u| in comparison with the right hand side. �

Theorem 3.9. If F ∈ Fα0 then F is univalent in Bn.

Proof. Suppose F is not injective. Then there exist linearly independent solutions
u1, . . . , un of (2.4) with P k

ij = Sk
ijF which vanish at z0 ̸= z1 in Bn. By linear

invariance, we may take z0 = (0, . . . , 0) and z1 = (a, 0, . . . , 0), 0 < a < 1. The
gradients ∇u1(z0), . . . ,∇un(z0) must be linearly independent, hence some linear
combination u = a1u1 + · · · + anun has ∇u(z0) = (1, 0, . . . , 0). Let Σ = {z ∈ Bn :
u(z) = 0}. Observe that because u is a non-trivial solution of (2.4), then ∇u(z)
cannot vanish for z ∈ Σ, hence Σ is a smooth hypersurface. For zb = (b, 0, . . . , 0),
0 < b < 1, let B(zb, r(b)) be the Bergman ball centered at zb that is tangent to Σ
at the origin z0. It is known that the norm ||SF || controls the second fundamental
form of Σ in the Bergman metric, and at the origin we have the following. Let
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γ(t) = (z1(t), . . . , zn(t)) be an (euclidean) arclength parametrized line of curvature
of Σ with γ(0) = z0. Since u(γ(t)) = 0 we have

Hess(u)(γ′, γ′) +∇u · γ′′ = 0 ,

and because γ is a line of curvature and ∇u(z0) = (1, 0, . . . , 0), we have that
γ′′(0) = (k, 0, . . . , 0). It follows that

|k| =

∣∣∣∣∣
n∑

i,j=1

∂2u

∂zi∂zj
(z0)z

′
i(0)z

′
j(0)

∣∣∣∣∣ .
In light of (2.4) we see that

|k| =
∣∣γ′(0)tS1Fγ′(0)

∣∣ .
Since |γ′(0)| = 1 in the euclidean norm, it follows finally that |k| ≤ (n + 1)

3
2α0.

Because α0 ≤ cn− 3
2 , we can ensure, for small c, that Σ is flat enough at the origin

so that the intersection of Σ and the closure of all balls B(zb, r(b)) in a fixed
(small) neighborhood of z0 reduces to this point only. For b sufficiently small, then
u ̸= 0 in B(zb, b). Let b1 be the supremum of all such b. We claim that b1 = 1/2,
contradicting the fact that u(z1) = 0. If b1 < 1/2 then u ̸= 0 in B1 = B(zb1 , b1)
but there exists z2 ∈ B1 for which u(z2) = 0. By the previous argument, z2
is not the origin. We know that λu,B1 is convex in the Bergman metric of B1,
and again because of the orders of vanishing of |u| at z0, z2 we conclude that
λu,B1(z0) = λu,B1(z2) = 0. But then λu,B1 cannot be convex when restricted to
the Bergman geodesic that terminates at z0, z2. This contradiction proves the
theorem. �

4. Distortion and Continuity

In this section we will study continuous extension to the boundary of mappings
in the class Fα0 which are quasiregular in the ball. As a complement to Theorem
3.9, we will show that the extension remains injective in the closed ball, setting up
the stage in the final section for the construction of the homeomorphic extension.
A mapping F ∈ Fα0 will be said to belong to F∗

α0
if ∇(JF )(0) = 0.

Theorem 4.1. Let F ∈ F∗
α0
. Then

(4.1) |JF (z)| ≤ 2

(1− |z|)γ
,

where

γ = γ(n, α0) =
n+ 1

2

(
1− β(n, α0)

√
n+ 1

)
.

If, in addition, F is quasiregular in Bn then there exists C > 0 such that

(4.2) ||DF (z)|| ≤ C

(1− |z|) γ
n

.
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In particular, F (Bn) is a bounded domain.

Proof. Because λF is strictly convex in the Bergman metric with the conditions at
the origin λF (0) = 1, ∇λF (0) = 0 it follows from (3.4) that

λF (z) ≥ cosh (βd(0, z)) ,

where d(0, z) is the Bergman distance

d(0, z) =

√
n+ 1

2
log

1 + |z|
1− |z|

≥
√
n+ 1

2
log

1

1− |z|
.

Then (4.1) obtains from the definition of λF , together with cosh(t) ≥ 1
2
et and

λF (z) ≤
1

(1− |z|)|JF |
1

n+1

.

The estimate (4.2) follows from (4.1) directly if F is quasiregular in Bn. Because
γ
n
∈ (0, 1), we deduce the final claim that the image is bounded since the right hand

side in (4.2) is integrable on [0, 1). �

Remarks: Because the right hand side in (4.1) is integrable in the ball, the image
F (Bn) has finite volume regardless of quasiregularity.
It is interesting to note that the first part of Theorem 4.1 provides better esti-

mates on the jacobian than those coming from the order of the linearly invariant
family [28].

Corollary 4.2. Let F ∈ F∗
α0

be quasiregular in Bn. Then F admits a Hölder

continuous extension to Bn.

Proof. The proof follows directly from the estimate (4.2) and Lemma 8.5.4 in [10].
The resulting exponent of Hölder continuity is 1− γ

n
. �

It is natural to inquire about the injectivity of the mapping F in the closed
ball. To answer this question it will be necessary to establish first an important
geometric property of the image domain. Suppose F ∈ Fα0 is not normalized to
have ∇(JF )(0) = 0. If M is a Möbius transformation of the form

(4.3) M(w) =

(
w1

1− a · w
, . . . ,

wn

1− a · w

)
,

where a ·w = a1w1+ · · ·+anwn, then the mapping H = M ◦F will satisfy H(0) = 0
and DH(0) = Id. By choosing a = (a1, . . . , an) = − 1

n+1
∇(JF )(0) we can achieve

that ∇(JH)(0) = 0. Because of the invariance under Möbius transformations,
SH = SF , although H will cease to be regular if there are points z ∈ Bn for which
a · F (z) = 1. We claim, nevertheless, that this cannot occur. The calculation
given in the proof of Lemma 2.1 shows that, at points where a · F (z) = 1 , one
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would have u = (JH)−
1

n+1 = 0. But u = (JH)−
1

n+1 is a solution of (3.1) with
u(0) = 1,∇u(0) = 0, and therefore, by Theorem 3.8, cannot vanish in Bn. This
proves our claim. We have concluded that for any mapping F ∈ Fα0 there exists
a Möbius transformation M such that H = M ◦F ∈ F∗

α0
. In particular, the image

F (Bn) does not meet the hyperplane a ·w = 1, denoted by H(0). In the case that
H is also quasiregular in Bn, it will be bounded by Theorem 4.1, which implies
that the closure of F (Bn) does not meet H(0).
We define the hyperplane H(z0) for a generic z0 ∈ Bn by considering Koebe

transforms. For z0 ∈ Bn and F ∈ Fα, let σ be an automorphism of Bn with
σ(0) = z0. Then

(4.4) G(z) = Dσ(0)−1DF (z0)
−1 [F (σ(z))− F (z0)]

is called a Koebe transform of F . It is normalized to have G(0) = 0, DG(0) = Id,

and has ∥SG∥ = ∥SF∥. As we have seen, the composition H = M ◦G with

M(w) =

(
w1

1− a · w
, . . . ,

wn

1− a · w

)
and a = a(z0, F ) = − 1

n+1
∇(JG)(0) produces a critical point for λH at z = 0.

The hyperplane H(z0), omitted by F (Bn), will emerge as a consequence of the fact
that the image G(Bn) omits the hyperplane a(z0, F ) · z = 1. To make this precise,
observe that

JG(z) = Jσ(0)−1JF (z0)
−1JF (σz)Jσ(z) ,

hence

∇(JG)

JG
(z) =

∇(JF )

JF
(σ(z))Dσ(z) +

∇(Jσ)

Jσ
(z) ,

which at the origin gives

∇(JG)(0) =
∇(JF )

JF
(z0)Dσ(0) +

∇(Jσ)

Jσ
(0) .

If K(z0) denotes the hyperplane a(z0, F ) · w = 1 omitted by G(Bn), then we see
that F (Bn) omits the hyperplane given by

(4.5) H(z0) = F (z0) +DF (z0)Dσ(0)K(z0) .

We remark that, although the automorphism σ is unique only up to precompo-
sition with a rotation of the ball, the resulting hyperplane H(z0) only depends on
the point z0 and not on the particular choice of automorphism σ taking the ori-
gin to z0. We will omit the calculation. Another important property that follows
from derivation of H(z0) is that an inversion of F with respect to this hyperplane
produces a critical point of the resulting convex function at z0.
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Because
a(z0, F )

||a(z0, F )||2
∈ K(z0) ,

we see that

E(z0) = F (z0) +DF (z0)Dσ(0)
a(z0, F )

||a(z0, F )||2
∈ H(z0) ,

and hence E(z0) is a value omitted by F (Bn) for every z0 ∈ Bn. It will be relevant
for the extension in the next section that the hyperplane H(z0) remains disjoint

even from the closure F (Bn) when F is quasiregular.

Remark: When n = 1, then the hyperplanes above reduce to single points and
E(z) becomes

f(z) +
(1− |z|2)f ′(z)

z̄ − 1

2
(1− |z|2)f

′′

f ′ (z)

,

which is the Ahlfors-Weill formula that extends mappings f in the Nehari class.

Lemma 4.3. Let F ∈ F∗
α0

be quasiregular. Then for each z0 ∈ Bn the hyperplane

H(z0) is disjoint from the closure F (Bn).

Proof. Suppose not. By the analysis leading to the definition of H(z0), this means

that the hyperplane a · w = 1 is not disjoint from G(Bn), where G is the Koebe
transform of F in (4.4) and a = a(z0, F ). Hence, there exists ζ0 ∈ ∂Bn such that
a ·G(ζ0) = 1. Because H ∈ F∗

α0
, then (4.1) implies that

|JH| ≤ 1

(1− |z|)γ
,

but at the same time,

JH(z) =
JG(z)

(1− a ·G(z))n+1
.

The mapping G inherits quasiregularity from F , and so,

||DG(z)||
|1− a ·G(z)|1+ 1

n

≤ 1

(1− |z|) γ
n

.

The function ϕ(z) = (1 − a · G(z))−
1
n is holomorphic in Bn and has |ϕ(ζ0)| = ∞,

which leads to contradiction since

|∇ϕ(z)| ≤ ||DG(z)||
|1− a ·G(z)|1+ 1

n

≤ 1

(1− |z|) γ
n

,

with the right hand side integrable. This finishes the proof. �
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Lemma 4.4. Let F ∈ F∗
α0

be quasiregular, and let {zn} ⊂ Bn be a sequence with
zn → ζ ∈ ∂Bn. Then E(zn) → F (ζ).

Proof. We will show that E(z)−F (z) → 0 as |z| → 1, which will prove the lemma
because F is continuous up to the boundary. To this end we will show that

(4.6) ||E(z)− F (z)|| = O
(
(1− r)

1
2(β

√
n+1− 1

n)
)
,

where r = |z| and β = β(n, α) as in Lemma 3.3. Fix z ∈ Bn. By rotating F we
may assume that z = (z1, 0, . . . , 0). Then

(4.7) ||E(z)− F (z)|| ≤ ||DF (z)|| ||Dσ(0)(a(z))||
||a(z)||2

,

where we use a(z) for a(z, F ). The term ||DF (z)|| is O(|JF (z)| 1n ) because of
quasiregularity. Next,

a(z) = − 1

n+ 1
∇(JG)(0) = − 1

n+ 1

[
∇(JF )

JF
(z)Dσ(0) +

∇(Jσ)

Jσ
(0)

]
.

The mapping σ may be taken of the form

σ(w) =

(
w1 + z1
1 + z̄1w1

,

√
1− |z1|2w2

1 + z̄1w1

, . . . ,

√
1− |z1|2wn

1 + z̄1w1

)
,

hence

Dσ(0) =


1− |z1|2 0 · · · 0

0
√

1− |z1|2 0 · · ·
...

...
...

...

0 0 · · ·
√

1− |z1|2

 ,

and

Jσ(w) =
(1− |z1|2)

1
2
(n+1)

(1 + z̄1w1)n+1
,

from which we obtain

∇(Jσ)

Jσ
(0) = −(n+ 1) (z̄1, 0, . . . , 0) .

Then

a(z) = (z̄1, 0, . . . , 0)−
1

n+ 1

∇(JF )

JF
(z)Dσ(0)

=

[(
z̄1

1− |z̄1|2
, 0, . . . , 0

)
− 1

n+ 1

∇(JF )

JF
(z)

]
Dσ(0)



18 MARTIN CHUAQUI AND RODRIGO HERNÁNDEZ

= [A+B]Dσ(0) = (1− |z̄1|2)A+
√
1− |z̄1|2B ,

where A = (a1, 0, . . . , 0) and B = (0, b2, . . . , bn). Then

Dσ(0)(a(z)) = (1− |z̄1|2)2A+ (1− |z̄1|2)B .

This leads us to estimate the quantity

||(1− |z̄1|2)2A+ (1− |z̄1|2)B||
||(1− |z̄1|2)A+

√
1− |z̄1|2B||2

,

or equivalently,

(1− |z1|2)2||A||+ (1− |z1|2)||B||
(1− |z1|2)2||A||2 + (1− |z1|2)||B||2

=
ax+ by

ax2 + by2
= ϕ(x, y) ,

where a = b2 = (1− |z̄1|2)2 and x = ||A||, y = ||B||. For a, b, x fixed, the maximal
value of ϕ(x, y) when y ≥ 0 occurs when

y =

√
a x

√
a+

√
a+ b

∼
√

1− |z1|2 , |z1| → 1 ,

with corresponding maximal value for ϕ asymptotically equal to

ρ =
1

2
√

1− |z1|2 x

for |z1| close to 1. The final step requires to find a lower bound for x = ||A||, which
will arise as a consequence of (3.4). Indeed, (3.4) together with the critical point
at the origin, imply an exponential growth for λF along the ray [ζ, 0, . . . , 0) in the
Bergman metric. Therefore,

(1− |ζ|2) |∂ζλF (ζ, 0, . . . , 0)| ≥ βλF (ζ, 0, . . . , 0) .

By evaluating at ζ = z1 we see that

x = ||A|| ≥ β

1− |z1|2
,

which gives

ρ ≤
√

1− |z1|2
2β

.

Finally, in (4.7) we see that

||E(z)− F (z)|| ≤ C|JF (z)|
1
n

√
1− |z1|2 = C

λF (z)
−n+1

n

(1− |z1|2)
1
2n
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≤ C
λF (z)

−1

(1− |z1|2)
1
2n

≤ C
e−βdB(0, z)

(1− |z1|2)
1
2n

,

where dB(0, z) =
√
n+1
2

log 1+|z|
1−|z| is the Bergman distance to the origin. This finally

gives

||E(z)− F (z)|| ≤ C (1− |z1|2)
1
2
(β

√
n+1− 1

n
) ,

which proves (4.6). �
Theorem 4.5. If F ∈ F∗

α0
is quasiregular then F (Bn) is weakly linearly convex.

Proof. Let F (ζ) be a boundary point of F (Bn), ζ ∈ ∂Bn, and consider the sequence
of points zn = rnζ ∈ Bn with rn → 1. The family of hyperplanesH(zn) contains the
sequence of points E(zn) which converge to F (ζ). It follows that some subsequence
of hyperplanes converge to a hyperplane H(ζ) that contains the point F (ζ). The
hyperplane H(ζ) must be omitted by F (Bn) since F (Bn) ∩ H(zn) = ∅ for every
n. �
Even though quasiregularity becomes an essential hypothesis for the univalence

on the boundary and for an actual gluing of F (Bn) with the extension, we can
draw the following corollary.

Corollary 4.6. If F ∈ F∗
α0

then F (Bn) is weakly linearly convex.

Proof. For 0 < r < 1 we consider the mappings Fr(z) =
1
r
F (rz). The mappings

Fr have ∇(JFr)(0) = 0, and Lemma 3.5 then shows that Fr ∈ F∗
α0
. Since Fr

are quasiregular, we deduce from Theorem 4.5 that the images F (rBn) are weakly
linearly convex, from which the corollary follows. �

We can now state the last result of this section.

Theorem 4.7. Let F ∈ F∗
α0

be quasiregular in Bn. Then F is univalent in Bn.

Proof. We know that F extends continuously to the closed ball. Suppose F fails to
be injective in Bn. Then there are distinct points ζ1, ζ2 ∈ ∂Bn for which F (ζ1) =
F (ζ2) = w0 ∈ ∂Ω, Ω = F (Bn). Let H = {a0 + a1w1 + · · · + anwn = 0} be a
hyperplane of support to Ω at w0, and let T be the Möbius transformation

T (w) =

(
w1

a0 + a1w1 + · · ·+ anwn

, . . . ,
wn

a0 + a1w1 + · · ·+ anwn

)
.

The mapping G = T ◦ F is holomorphic in Bn because of the choice of the hyper-
plane H, but G(ζ1), G(ζ2) are the point at infinity. Consider the convex function
λG along the (Bergman) geodesic Γ joining ζ1 and ζ2. Because of (3.4), then λG
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will exhibit exponential growth along Γ at least in the direction of one of the end-
points, say, in the direction of ζ1. Then, as in the proof of Theorem 4.1, we will
have

|JG(z)| ≤ C

(1− |z|)γ

along Γ in the direction of ζ1, for some constant C. But

|JG(z)| = |JF (z)|
|a0 + a · F (z)|n+1

, a = (a1, . . . , an) ,

and using the quasiregularity of F we obtain

||DF (z)||
|a0 + a · F (z)|1+ 1

n

≤ C1

(1− |z|) γ
n

.

But the function

ϕ(z) =
1

(a0 + a · F (z))
1
n

is holomorphic in Bn and tends to infinity at ζ1, which leads to a contradiction
because

|∇ϕ(z)| ≤ ||a||||DF (z)||
|a0 + a · F (z)|1+ 1

n

≤ C2

(1− |z|) γ
n

,

and the right hand is integrable along Γ. This finishes the proof. �
Remark: The same method of proof shows that, under the same assumptions as
in Theorem 4.6, a hyperplane of support at a boundary point of F (Bn) can meet
the boundary only at that point.

5. Extensions

In this section, we collect our previous results to obtain the extension EF to Cn

of mappings F ∈ Fα0 that are quasiregular in Bn. For points z /∈ Bn, the extension
will take values in the set of complex hyperplanes, but will remain a homeomor-
phism in the sense that that it assigns in a continuous (even real analytic) fashion
a unique hyperplane for each such z. For z ∈ Cn we recall the notation z∗ = z/|z|2,
and recall the hyperplane defined in (4.5).

Theorem 5.1. Let F ∈ F∗
α0

be quasiregular and consider

(5.1) EF (z) =

 F (z) , |z| ≤ 1

H(z∗) , |z| > 1 .

Then EF is a homeomorphic extension of F that glues F (Bn) to a complementary
domain in the projective dual of Cn.
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Proof. By Theorem 4.6, we know that F is univalent in Bn. On the other hand, by
Lemma 4.3, the collection of hyperplanes H(z∗), |z| > 1, is disjoint from F (Bn).
Furthermore, since an inversion of F with respect to H(z∗) produces a critical
point of the density function λF at z∗, we see from the strict convexity that such
hyperplanes must be distinct for different z∗. This shows that EF is injective. By
the nature of the explicit formula in (4.5), it is clear that the extension in (5.1) is
also continuous (and real analytic).
We comment finally on the location of the hyperplanes H(z∗) when |z| > 1 is

very large. To that extent, we use equation (4.5) with z0 = z∗ near the origin.
Simple calculations show that a(z0, F ) = O(z0), hence the hyperplane K(z0) given
by a ·w = 1 is far away from the origin. It follows now from (4.5) that H(z0) itself
will also be far away from the origin. �
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points of the Poincaré metric, Comment. Math. Helv. 69 (1994), 659-668.

[7] Chuaqui, M. and Hernández, R., The order of a linearly invariant family in Cn, to appear
in J. Math. Anal. Appl. (arxiv.org/abs/1206.0642).

[8] Duren, P., Univalent Functions, Springer-Verlag, 1983.
[9] Gehring, F.W. and Pommerenke, Ch., On the Nehari univalence criterion and quasicircles,

Comment. Math. Helv. 59 (1984), 226-242.
[10] Graham, I. and Kohr, G., Geometric function theory in one and higher dimensions, Pure

and Applied Math. 255, Marcel Dekker, 2003.
[11] Hamada, H. and Kohr, G., The growth theorem and quasiconformal extension of strongly

spirallike mappings of type α, Complex Variables 44 (2001), 281-297.
[12] Hamada, H. and Kohr, G., Loewner chains and quasiconformal extension of holomorphic

mappings, Ann. Polon. Math. 81 (2003), 85-100.
[13] Hernández, R., Schwarzian derivatives and a linearly invariant family in Cn, Pacific J. Math.

228 (2006), 201-218.
[14] Hernández, R., Schwarzian derivatives and some criteria for univalence in Cn, Complex

Variables 52 (2007), 397-410.
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